VALUE ANALYSIS - SPRAY ASSEMBLY OF PLASTERING SPRAY GUN MACHINE

¹AMIT KUMAR KUNDU, ²CHANCHAL KUMAR SALODE, ³SAKSHI MISHRA

¹Assistant Professor, ²Assistant Professor, ³Assistant Professor
 ¹Department of Mechanical Engineering,
 ¹Acropolis Institute of Technology and Research, Indore, India.

Abstract: Customer satisfaction is the key to success of industries. During product design stage main focus of designer on technical parameters and constraints and design variables. All parts and assemblies are not having same critical to quality (CTQ) characteristics therefore designers should also work on specific area related to cost for customer delight by using value engineering (VE). Based on different need level of customer like expecters, spoken, unspoken and exciters, value engineering team analyze different design parameters and selection of material by using functional evaluation technique and cost matrix. Different guidelines of value engineering principles are used to analyze on spray assembly of plastering spray gun machine used in wall plastering application.

Keywords - Customer delight, Material properties, Functional evaluation, Cost matrix.

I. INTRODUCTION

Success of organizations depend on the performance of various department like marketing, product development, production, finance, human resource etc. Some department have active role in success where as some departments play crucial role in success story of organization by helping to increase the effectivity of other department. In current industrial scenario, where customer loyalty is only defined by customer satisfaction. Customer satisfaction depends on two major factor product quality and value for money. Therefore, product development team has active as well passive role to make product as per customer requirement. Functions and product quality parameters are taken in consideration during design stages but various organization often forget to apply value engineering concept which affects the customer satisfaction. Value analysis provide a deep understanding of customer satisfaction by analyzing value for their money. Value is the ratio of function of product and cost paid by customer. To increase value of product two activity can be utilized either increase the function of product which has direct relation with value or reduce cost of product. By utilizing cost matrix and different parameters like material cost, processing cost and assembly cost, analysis is done for utilization of function. Without compromising the quality, extra cost is reduced to make product more valuable to customer. The objective of value analysis is to provide only required function and quality by lowering or eliminating unnecessary cost.

II. LITERATURE SURVEY

Amit Narwal et al.[1] presented a case study on value analysis based on sheet metal. Market competitiveness is measured using value analysis of same type of parts. **Marjan Leber et al.** [2] discussed conjoint and value analysis and their importance during product development stage as well as developed product stages to lower the cost of product. **Ignacio Cariaga et al.** [3] analyzed the integration of value analysis and quality function deployment (QFD) and use of function analysis and system technique (FAST) in decision making. **Jing Tao et al.** [4] discussed about enhancement of life-cycle of product by using value engineering and sustainable value modeling analysis. **Amit Kumar Kundu et al.** [5] developed product by using different design concepts of systematic and morphological design theory. The functional design variables are defined during product development. **Satish M. Silaskar et al.** [6] discussed principles of value engineering in weight Optimization of value enhance the products value by increasing performance without increasing the cost and affecting the quality, saleability or maintainability. **Ainul Farahin Binti Abdullah et al.** [8] presented how utilization of Value analysis Value Engineering (VAVE) methodology in new product development. Optimization of value is processed by using Functional Analysis System Technique (FAST) which is integral part of VAVE methodology. **Yin et al.** [9] discussed about improving the architecture of product development process (PDP) is an effective approach to improve PDP performance. Use of quality function deployment (QFD) to understand critical to quality (CTQ) parts and assembly balance the cost and product performance.

III. VALUE ANALYSIS METHODOLOGY

The value engineering methodology is very unique in nature and can easily be applied during any stages of product life-cycle. The methodology of value engineering is finalized by a value team leader based on function analysis from product or component or assembly. It is performed as per following flow process:

Fig. 1 Value analysis methodology

i. Orientation Phase: Analyze the problem and prepare for the value study.

Fig. 2 Constituents of Orientation Phase

ii. Information Phase: The phase is critical due various defining action like scope, target value and team building

iii. Function Analysis Phase: Recognize and confirm most suitable area for value analysis.

iv. Creative Phase: Brainstorming part of the whole process, this stage creates lots of alternatives.

v. Evaluation Phase: The phase of data analysis for decision making.

vi. Development Phase: The conclusion process for analysis and presentation of final data.

vii. Presentation Phase: To get a commitment to follow the best suitable option.

viii. Implementation Phase: This phase related to final decision making for adopting best decision to implement.

Value analysis tools and techniques applied on spray assembly plastering spray gun machine-3.1 Functional analysis worksheet is prepared for the different parts of the assembly-

Part Name	Sub-part/		Function		Part		Assembly	
	Description	Qty	Verb	Noun	Basic	Secondary	Basic	Secondary
	Housing	1	Provide	Strength	\checkmark		\checkmark	
	Bush	4	Connect	Parts		\checkmark		
Spraying	Cover Plate	1	Increase	Flexural				
unit				capacity				
	Nozzle	4	Supply	Material				\checkmark
	Bolt	5	Support	Housing				

Table 1 Functional analysis worksheet of Holding and flow of mixture unit

Costing of different units

Unit	Part	Quantity	Cost in Rs.
	Housing	1	1600
Spraying unit	Bush	4	640
	Cover Plate	1	280
	Nozzle	4	160
	Bolt	5	80
	Tota	2760	

Table 2 Costing of different units

3.2 Functional Evaluation of each part is done-

А	A3	A3	A3	A3	12	13
	В	B2	B2	B2	06	07
		С	C1	C1	02	03
			D	D1	01	02
				Е	00	01

Weight Factors (Like A1, A2, A3)						
1		2		3		
Minor difference in importance	Medium	difference in ir	nportance	Major difference in importance		

Unit	Key Letter	Part	Function	Weight	%Cost
	А		Provide Strength	13	57.97%
Spraying		Housing			
Unit	В	Bush	Connect Parts	07	23.18%
	С	Cover	Increase Flexural	03	10.14%
		Plate	capacity		
	D	Nozzl	Supply Material	02	5.79%
		e			
	E	Bolt	Support Housing	01	2.89%

Fable 3 Func	tional Evalua	ation of eac	h part is done

3.3 Creative phase-

By using creative phase activity analysis is done on spray assembly of existing product plastering spray gun machine. This is used for cost function analysis of different parts of particular sub-assembly. Design of different parts can be modified by using value analysis technique. With the help of comparative study selection of material is done in this phase without affecting functionality.

• **Comparative analysis of Housing** – Spraying unit part Housing is used to accommodate nozzle and parts. Material from holding unit is transferred to housing of spray unit by gravitational force and high-pressured air from pressure regulator unit sprays the mixture to the wall. Housing of wall plastering Semi-Automatic spray gun was made of LM6 material. In this comparative analysis we compare all the alternative materials which are suitable to replace LM6. In respect of these comparisons of mechanical properties, chemical compositions, physical properties and cost analysis with all alternative materials is done. Data for comparison is collected with the help of some research papers and some standard datasheets which was tested before.

Comparison of Mechanical Property Specification- Table is prepared and pie chart is generated for better comparison results. Mechanical properties of existing material (LM6) like 0.2% Proof Stress Tensile Stress, Elongation %, Impact Resistance, Brinell Hardness, Endurance Limit, Modulus of Elasticity and Shear Strength is compared with different alternative materials.

Grade		0.2% Proof	Tensile	Elongation	Impact	Brinell	Endurance	Modulus	Shear
		Stress	Stress	(%)	Resista	Hardness	Limit(5×10	of	Strength
		(N/mm^2)	(N/mm^2)		nce	(HB) max	7 cycles;	Elasticity((N/mm^2)
					Izod		N/mm ²)	$\times 10^3$	
					(Nm)			N/mm ²)	
LM 6	Sand	<u>60-70</u>	<u>60-70</u>	<u>5</u>	<u>6.0</u>	<u>50-55</u>	<u>51</u>	<u>71</u>	<u>120</u>
	<u>cast</u>								
LM4	Sand	70-110	70-110	2-3	1.4	65-80	75	71	150
	cast								
	Chill	80-110	80-110	2-4	2.1	70-90	85	71	165
	cast								
LM5	Sand	90-110	90-110	3	7.9	50-70	54	71	140
	cast								
	Chill	90-120	90-120	5	12.6	60-70	100	71	-
	cast								
LM9	Sand	95-120	95-120	<u>3-5</u>	<u>6.0</u>	75-85	<u>70-100</u>	71	<u>120</u>
	cast								

Grade		0.2% Proof	Tensile	Elongation	Impact	Brinell	Endurance	Modulus	Shear
		Stress	Stress	(%)	Resista	Hardness	Limit(5×10 ⁷	of	Strength
		(N/mm^2)	(N/mm^2)		nce	(HB) max	cycles;	Elasticity((N/mm^2)
					Izod		N/mm ²)	$\times 10^3$	
					(Nm)			N/mm ²)	
LM 6	Sand	<u>65</u>	75	5	<u>6.0</u>	<u>53</u>	<u>51</u>	<u>71</u>	<u>120</u>
	cast								
LM4	Sand	90	155	2	1.4	73	75	71	150
	cast								
	Chill	95	140	3	2.1	80	85	71	165
	cast								
LM5	Sand	100	155	3	7.9	65	54	71	140
	cast								
	Chill	105	225	5	12.6	65	100	71	-
	cast								
LM9	Sand	<u>108</u>	<u>190</u>	4	<u>6.0</u>	<u>80</u>	85	71	<u>120</u>
	cast								

Table 4 Comparison between Mechanical Property Specifications of Housing material

Fig. 3 Comparison of Mechanical Property Specification

А	Cast
В	0.2% Proof Stress (N/mm ²)
С	Tensile Stress (N/mm ²)
D	Elongation (%)
E	Impact Resistance Izod (Nm)
F	Brinell Hardness (HB) max
G	Endurance Limit(5×10 ⁷ cycles; N/mm ²)
Н	Modulus of Elasticity(×10 ³ N/mm ²)
	Shear Strength (N/mm ²)

Comparison of Composition Specification (%)-Table is prepared for better comparison results. Chemical properties of existing material (LM6) like Composition Specification of C,Mn,Si, P,S,Cr,Mo,Ni,Cu and N compared with different alternative materials.

Grade	Cu	Mg	Si	Fe	Mn	Ni	Zn	Pb	Sn	Ti	Al	Addition	Other
												al	Total
												Element	
LM6	<u>0.1</u>	<u>0.10</u>	10.0-	0.6	0.5	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	0.05	0.2	Re	0.05	0.15
			<u>13.0</u>										
LM4	2.0-	0.20	4.0-	0.8	0.2-	0.3	0.5	0.1	0.1	0.2	Re	0.05	0.15
	4.0		6.0		0.6								
LM5	0.1	3.0-	0.3	0.6	0.3-	0.1	0.1	0.05	0.05	0.2	Re	0.05	0.15
		6.0			0.7	[
LM9	0.20	0.2-	10.0-	0.6	0.3-	0.1	0.1	0.1	0.05	0.2	Re	0.05	0.15
		0.6	13.0		0.7						_		_

 Table 5 Comparison between Composition Specifications (%) of Housing Material

Comparison of Physical Properties- Table is prepared and pie chart is generated for better comparison results. Physical Properties of existing material (LM6) like Density, Mean Coefficient of Thermal Expansion, Thermal Conductivity, Specific Heat, Electrical conductivity and Freezing Range compared with different alternative materials.

Grade	Coefficient of	Thermal Conductivity	Electrical Conductivity	Density	Freezing
	Thermal	(watt/cm ² /cm/°C at 25°C)	(% copper standard at	(g/cm^3)	Range(C)
	Expansion		20 °C)		Approx
	(per at 20-				
	100 ° C)				
LM6	0.000020	0.34	<u>37</u>	2.65	<u>575-565</u>
LM4	0.000021	0.29	32	2.75	625-525
LM5	0.000023	0.33	31	2.65	642-580
LM9	0.000022	0.35	38	2.68	575-550

Table 6 Comparison between Physical Properties of Housing material

Comparison of Cost of materials- Comparison of input cost is most important step in the Value analysis. Customer \geq satisfaction and producibility of any organization directly depend on the cost of product and these costs need to be analyzed by using proper tools with comparison of different alternatives materials available at market. Table and bar chart are prepared to analyzed cost of raw material of Housing.

1	1 2		U	
Grade	LM6	LM4	LM5	LM9
Cost (per	180	135	160	140
Kg)				

Table 7 Comparison between Costs of Housing material

3.4 Function- Cost -Worth -Analysis:

Sr. No.	Function	Existing Product				New Product (Value analyzed)			value gap	% value gap
	Part name	Qty	Mat.	Cost per	Total Cost	Mat.	Cos t	Total Cost		
				unit			per unit			
1	Housing	1	LM6	225	225	LM9	175	175	50	22.22%
2	Bush	4	SS304	60	240	SS304	60	240	0	0%
3	Cover Plate	1	SS304	20	20	SS304	20	20	0	0%
4	Nozzle	4	SS201	20	80	SS201	20	80	0	0%
5	Bolt	5	SS201	16	80	SS201	16	80	0	0%
	Te	otal			645			595		

Table 8 Function- Cost -Worth -Analysis

3.5 Evaluation phase-

- Parameters
- a) Rigidity
- Light weight b)
- Durability c)
- Appearance d)
 - Alternative I- Change material LM6 to LM9 of different components of product

	В	С	D R	AW SCORE	FINAL SCORI	Ε
Δ	A3	A2	A2	07	7	8
Α	В	B2	B2	04	4	5
		С	C1	01	1	2
			D	00	1	1

Parameter	Rigidity	Light Weight	Durability	r	Appearanc	e	Total	
Weightage	8	5	2		1			
Alternative								
Existing	4	3	3		3			
	32	15		6		3	56	
Alternative-I	5	4	4		3			
	40	20		8		3	71	
5	4	3		2		1		
Excellent	Very Goo	d Go	od	Fair			Poor	
Table 0 Evaluation phase								

Table 9 Evaluation phase

3.6 Recommendation Phase-

Sr. No.	Parameter	Existing Material Cost	Alternative-I
1	Housing	225	175
2	Bush	240	240
3	Cover Plate	20	20
4	Nozzle	80	80
5	Bolt	80	80
	Total (in Rs.)	645	595

Table 10 Recommendation Phase

Fig. 5 Sample Product: Plastering spray gun machine (M/s Lakshmi Machine Tools, Indore)

www.jetir.org (ISSN-2349-5162)

Fig. 6 Sample Product: Spray assembly of plastering spray gun machine (M/s Lakshmi Machine Tools, Indore)

3.7 Conclusion and Future Scope-

1. Value engineering is successfully implemented for the cost reduction without the change in the product quality.

2. The total saving in raw material per product for specific component material by implementation of above recommendations are 22.22% for alternative I.

3. Other Industrial Engineering techniques can be used for further improvement in the product.

IV. ACKNOWLEDGMENT

We are very grateful to management of M/s Lakshmi Machine Tools, Indore for their co-operation and Support for providing organizational information for this analysis.

REFERENCES:

[1] A. Narwal, K. Lamba, 'Case Study on the Concept of Value analysis in Sheet Metal', International Journal of Enhanced Research in Science, Technology & Engineering, Vol. 4 Issue 12, December-2015, pp. 64-71.

[2] M. Leber, M. Bastic, M. Mavric, A. Ivanisevic, 'Value Analysis as an Integral Part of New Product Development', Procedia Engineering 69, 2014, pp. 90-98, doi:10.1016/j.proeng.2014.02.207

[3] I. Cariaga, T. El-Diraby, H. Osman, 'Integrating Value Analysis And Quality function Deployment for Evaluating Design Alternatives', Journal of Construction Engineering and Management, October 2007, pp. 761-770, doi:10.1061/(ASCE)0733-9364(2007)133:10(761)

[4]Jing Tao, Suiran Yu, Product life cycle design for sustainable value creation: methods of sustainable product development in the context of high value engineering, Procedia CIRP 69 (2018) 25 - 30

- [5] Amit Kumar Kundu, Dr. Pradeep Kumar Patil, Activity analysis of new product development, ISSN-2349-5162
- [6] Satish M. Silaskar, Dr. Vilas B. Shinde, Weight Optimization of Valve for Cost Effectiveness: Using Value Analysis, Procedia Manufacturing 20 (2018) 329–337
- [7] Kamal Patel, New product development with value engineering, IJARIIE-ISSN(O)-2395-4396
- [8] Ainul Farahin Binti Abdullah and Erry Yulian Triblas Adesta, Implementation of functional analysis using value analysis value engineering (vave) ISSN 1819-6608
- [9] Yin, F.P., Gao, Q., Ji, X., Performance modelling based on value analysis for improving product development process architecture, ISSN 1854-6250
- [10] Data of material cost in Rs.(per kg), <u>https://m.indiamart.com/</u>
- [11] Atlas grade datasheet for mechanical, chemical and physical properties of materials